
High-Fidelity Traffic Simulation with Camera Embeddings

Ryan Rong, Jerry Gu, Yina Jian
Stanford University

Abstract

Access to realistic traffic agent scenarios is crucial for
the development of autonomous vehicles, improving the
safety and efficiency of testing autonomous driving systems.
However, creating simulators that generate realistic traf-
fic scenarios matching the complexity and dynamism of the
real world remains a significant challenge. Transformer-
based next-token prediction models, such as Trajeglish and
SMART, have demonstrated success in learning complex
agent behaviors from historical trajectories and map data.
Yet, these approaches operate within an information bottle-
neck, inherently lacking the rich visual context of the real
environments and details like weather conditions, tempo-
rary obstacles, and fine-grained cues like hand gestures of
cyclists. To address this limitation, we propose to enhance
the capabilities of a pretrained SMART-7M model by inte-
grating camera embeddings from the Waymo Open Motion
Dataset 1.2.1. We employ a cross-attention mechanism to
effectively fuse the rich visual information with the exist-
ing agent and map representations within the transformer
decoder, demonstrating superior performance. This multi-
modal integration is designed to enable the model to gener-
ate more contextually aware, realistic, and responsive agent
trajectories. We evaluate our model’s performance against
the baseline, against other state-of-the-art models, and con-
duct both quantitative and qualitative analyses.

1. Introduction

Simulation has become essential for advancing au-
tonomous vehicle (ADV) development, as it allows test-
ing at scale and with greater reliability. Simply replaying
recorded sensor data and tweaking the software is a naı̈ve
approach, because it cannot account for how other road
users would react to the ADV’s altered behavior. Instead,
we need “sim agents” whose actions are responsive and re-
alistic, so that they can interact dynamically with the vehicle
under test.

There are various strategies for autonomous driving such
as cooperative driving, agent feature modeling to charac-
terize individual behaviors, and reinforcement learning un-

der both online/offline or on-policy/off-policy regimes [4].
Cooperative driving combines a human’s steering or brak-
ing input with a model-generated action, blending them as
α ahuman + β amodel. Agent feature modeling, a subfield
of agent-based modeling, summarizes each actor’s prefer-
ences or tendencies via a parameterized policy πθ(o) =
N (µ(o; θ),Σ(o; θ)), learned from many simulated or real
interactions; the resulting distribution can then inform other
agents’ decisions. Reinforcement learning formulates a
mapping from observed states to control signals (steering,
throttle, brake) that respect vehicle dynamics and environ-
mental constraints.

Yet all of these methods ultimately rely on simulating hu-
man drivers accurately, which brings us to the Waymo Sim
Agents Challenge. The challenge instead treats simulation
as a distribution-matching problem: given one second of
past trajectories and static map context, we seek a stochas-
tic simulator whose sampled futures match the true, but un-
known, distribution of all human driving behaviors. The
challenge further factorizes into two autoregressive models:
World and ADV. These models are conditionally indepen-
dent given the state of all the objects in the scene. This con-
ditional independence assumption ensures that the world
model could, in principle, be used with new “releases” of
the ADV model.

With the success of autoregressive LLMs [1], the field
switched to modeling sim-agents as a next-token predic-
tion task, with continuous agent trajectories refactored as
discrete motion tokens. State-of-the-art next-token simula-
tors such as SMART [10] and CAT-K [11] discretize agent
trajectories and map features into token streams and au-
toregressively predict future tokens with transformer mod-
els. These approaches achieve impressive accuracy on roll-
outs but omit raw visual inputs, preventing them from cap-
turing subtle, vision-dependent maneuvers such as emer-
gency pull-overs, curbside alignments, and nuanced colli-
sion avoidance.

Inspired by single-agent motion predictors such as
MoST [5], which show that camera embeddings improve
per-agent forecast accuracy, we propose Camera SMART.
We extract compact, 32-dimensional embeddings from each
of Waymo’s eight camera views via a pretrained tokenizer

1

and inject them into SMART’s decoder through cross-
attention layers. By allowing trajectory tokens to attend
to visual features alongside map tokens, our fusion model
reduces the realism gap: on the standard Realism Meta-
Metric (RMM), we observe a +1.6% improvement over
the original SMART baseline while still using only 10% of
the training data for fine-tuning. Qualitatively, our camera-
aware sim agents reproduce off-road pull-overs and curb-
side corrections that map-only models frequently mishan-
dle. In sum, this work demonstrates that integrating com-
pact vision into multi-agent next-token simulators can sub-
stantially elevate the fidelity of simulated driving behaviors
and accelerate the safe rollout of true self-driving systems.

2. Related Work
2.1. Tokenizing for Traffic Simulation

In traffic simulation, tokenization is a technique that
aims to convert continuous traffic data, such as positions,
velocities, and actions into a more manageable set of dis-
crete actions [12][3]. In Janner et al.’s research, they applied
uniform tokenization to traffic data, enabling them to model
traffic trajectories with a transformer-based architecture that
took in input sequences of tokens [3].

Subsequent work on tokenization for traffic simulation
introduced more specialized tokenization methods, includ-
ing the k-disks algorithm, a modified version of the k-means
algorithm that minimizes the overlap of tokens to ensure di-
verse coverage [7].

2.2. Camera embeddings

Most traffic simulation models use only motion data
and exclude other modalities such as camera data from
the surrounding environment, limiting real-world perfor-
mance. Specifically, camera data has been underutilized in
traffic simulation due to difficulties dealing with its high-
dimensional nature [5]. However, there exist techniques
using transformer-based models such as CLIP, DINO, and
VQ-GAN to create compact camera embeddings that effi-
ciently integrate visual context[8][6][2]. In 2024, Mu et al.
demonstrated that incorporating camera embeddings from
various encoders on the Waymo Open Dataset led to a sig-
nificant performance boost for motion prediction with sin-
gle agents [5]. We focus on incorporating camera embed-
dings to achieve robust rollouts for multi-agent interactions.

2.3. Next-Token Prediction for Traffic Simulation

Trajeglish [7] was the first attempt by researchers to
model the complex problem of traffic scenario generation
using a next-token based approach. They first tokenized the
continuous set of possibilities into a diverse set of 384 dis-
crete potential driving actions using a K-disks algorithm.
Then, they applied a encoder-decoder style architecture to

predict the action of each agent at a given time step based
on all action tokens taken in previous timestep and by ear-
lier agents in the same time step.

Building on earlier next-token-based traffic simulation
models, the Scalable Multi-Agent Real-Time Motion Gen-
eration via Next-token Prediction (SMART) [10] model was
developed to improve generalization ability and efficiency.
The researchers behind SMART selected a decoder-only
model architecture, which increased inference efficiency by
avoiding the costly act of re-encoding previous tokens. Ad-
ditionally, fine-tuning techniques have been demonstrated
to further enhance the realism of models such as SMART.
Currently, CAT-K [11] is the state-of-the-art approach. This
fine-tuning technique implements a top-k sampling for pol-
icy rollout and enforces a distance metric with respect to the
ground truth (GT) to simulate realistic scenarios. Notably,
these methods do not incorporate camera embeddings.

3. Dataset
The Waymo Open Motion Dataset is provided in proto

format including map information, agent trajectories, and
occupancy, as well as LiDAR and camera embeddings.
Camera information is collected by Waymo’s front, front-
left, front-right, side-left, side-right, rear-left, rear-right,
and rear sensors. Camera embeddings are then generated
by Waymo’s pretrained VQ-GAN network [5].

Figure 1. Camera Data sample

The dataset is split into train(70%), test(15%) and
validation(15%) sets. It is composed of 103, 354 segments
each containing 20 seconds of object tracks at 10Hz
and map data for the area covered by the segment. Each
segment is further divided into 9-second windows, where 1
second represents the history and 8 seconds represent the
future data, as shown below:

Information Scenario proto tf.Example

Segment length 9 {1:h, 8:f} 9 {1:h, 8:f}
Maps Vector maps Sampled as points
Representation Single proto Set of tensors

Among the motion data, all coordinates in the dataset are
in a global frame with X as East, Y as North and Z as up,
and the unit for displacement is meters.

The Waymo Open Dataset provides scenario and map
data in serialized proto format. This format organizes struc-
tured information about the driving environment into hier-

Figure 2. Data Sample Visualization from proto format

archical message blocks, where each block captures a dif-
ferent aspect of the scene or its dynamics.

A single scenario file contains three primary message
types: ObjectState, Track, and Scenario. The
ObjectState message records the static properties of an
object at a given timestep, including its center coordinates,
dimensions, heading, velocity, and validity. The Track
message bundles together a sequence of ObjectState
entries for a single object over time and includes a unique
ID and object type (e.g., vehicle, pedestrian). Finally, the
Scenario message aggregates the dynamic state of all
tracked objects, traffic signal states, static map features, au-
tonomous vehicle index, camera tokens, and other metadata
for a complete scene rollout.

The map files are similarly organized under the top-level
Map message. This contains a list of static MapFeature
messages (e.g., LaneCenter, RoadEdge, RoadLine,
StopSign) as well as dynamic state updates captured by
the DynamicState message. Static elements define per-
sistent road geometry, such as lane boundaries and traffic
signs, while dynamic states record time-varying features
like traffic signal changes at each timestep.

All spatial elements (e.g., bounding boxes, polyline
edges) are defined relative to a local origin and are repre-
sented using MapPoint coordinates in meters. Temporal
alignment across messages is enforced via a shared times-
tamp array (timestamps seconds), which ensures con-
sistency when retrieving object states, dynamic map states,
and sensor data (e.g., LiDAR or camera tokens) at a given
timestep.

This structured proto design enables scalable simula-
tion and model training by encoding agent trajectories, in-
teractions, and rich environmental context in a machine-
readable, temporally coherent format.

4. Methods
4.1. Linear Extrapolation

As a simple baseline, we linearly extrapolate each
agent’s 3D position using the last two observations. Denote

an agent’s position at time t − 1 and t by pt−1,pt ∈ R3,
observed at fixed interval ∆t. We compute the constant ve-
locity

v =
pt − pt−1

∆t
. (1)

Then, the k-step–ahead position is

pt+k = pt + k∆t v , k = 1, 2, (2)

To generate multiple rollouts, we add zero-mean Gaussian
noise ϵk ∼ N (0, σ2I) to the velocity at each step:

p̃t+k = pt + k∆t
(
v + ϵk

)
. (3)

This baseline does not model inter-agent interactions or
map constraints.

4.2. SMART Baseline

SMART [10] (Scalable Multi-agent Real-time Mo-
tion Generation via Next-token Prediction) is a purely
autoregressive, decoder-only model that tokenizes both
agent trajectories and map elements into discrete token
sequences. These sequences are processed by a hierarchical
transformer to predict each agent’s next “motion” token.

Agent tokenization. For every agent type (vehicle,
pedestrian, cyclist), historical trajectories are split into
fixed-length segments of five time steps (0.5 s at 10 Hz).
We run K-disk clustering on these segments to define a
vocabulary of Vagent = 2048 discrete motion tokens. Each
token represents the relative ∆x,∆y,∆z and heading
change over that 0.5 s window.

Map tokenization. Map elements (lanes, crosswalks,
stop signs, etc.) are represented by their geometric poly-
lines (sequences of 2D points) and semantic labels. Each
element is decomposed into small line-segment fragments
and clustered into Vmap discrete tokens based on orientation
and type. The result is a sequence of map tokens per scene.

Model architecture. The SMART decoder has two
main modules:

• Map encoder: A graph neural network constructs a
radius-based connectivity graph over map-element to-
kens, then applies attention—capturing pairwise spa-
tial relationships. The output is a set of map-feature
embeddings.

• Agent decoder: At each decoding step, three attention
layers are applied in sequence:

1. Temporal self-attention over each agent’s past
motion tokens.

2. Map-to-agent cross-attention, which lets the
agent attend to relevant map embeddings.

3. Agent-to-agent cross-attention, which models
social interactions among agents.

Finally, a feed-forward network predicts the next mo-
tion token via softmax over the token vocabulary.

The model is trained end-to-end with a next-token pre-
diction loss (cross-entropy), where the target is the actual
next motion token in the ground truth trajectory.

4.3. Cross Attention with Camera Embeddings

To incorporate visual context, we introduce camera-
based cross-attention layers into pretrained SMART de-
coder blocks. In particular, at the second decoder layer (af-
ter temporal self-attention), we insert an extra multi-head
attention module whose keys and values come from cam-
era features. In terms of code, our contributions include
scripts to download and preprocess camera embeddings,
Camera-Aware SMART architecture and configs, modified
DataLoader pipeline, and modified training, validation, and
testing pipelines.

4.3.1 Camera Tokenization and Embedding

Let C = {c1, . . . , cC} denote the set of C onboard cameras
(e.g., front, front-left, front-right, side-left, side-right, rear,
rear-left, rear-right). For each camera c ∈ C, denote its raw
image at time t by

I
(c)
t ∈ RH×W×3,

with H×W pixels. We convert each I
(c)
t into a fixed-length

embedding through four steps:

1. Discrete tokenization. Apply Waymo’s pretrained to-
kenizer

τ : RH×W×3 −→ {1, . . . , V }N , N = 256,

to yield integer tokens(
t
(c)
t,1 , . . . , t

(c)
t,N

)
= τ

(
I
(c)
t

)
, t

(c)
t,i ∈ {1, . . . , V }.

2. Codebook embedding. Let E ∈ RV×d be a learnable
codebook with embedding dimension d = 32. Each
token index is looked up as

e
(c)
t,i = E

t
(c)
t,i

∈ Rd, i = 1, . . . , N.

Hence {e(c)t,i }Ni=1 are the d-dimensional embeddings
for camera c at time t.

3. Mean pooling. We compute the average of these N
codebook vectors:

h
(c)
t =

1

N

N∑
i=1

e
(c)
t,i ∈ Rd.

This yields a single per-camera, 32-dimensional vec-
tor.

4. Learned projection. Finally, map h
(c)
t into the trans-

former hidden dimension D = 128 via

z
(c)
t = Wp h

(c)
t + bp ∈ RD,

where Wp ∈ RD×d and bp ∈ RD are learned. The
set {z(c)t }Cc=1 forms the C ×D camera feature matrix
at time t.

4.3.2 Cross-Attention Layer

In decoder layer 2 of SMART, let H(ℓ)
t ∈ RL×D be the

sequence representation after self-attention at time t (with
token sequence length L). We then apply a camera-based
multi-head cross-attention:

H
(ℓ+1)
t = LayerNorm

(
H

(ℓ)
t + MHCA

(
Q = H

(ℓ)
t ,

K = F
(cam)
t , V = F

(cam)
t

))
. (4)

where F
(cam)
t = [z

(1)
t ; z

(2)
t ; . . . ; z

(C)
t] ∈ RC×D is the

stacked camera-embedding matrix at time t. The output
H

(ℓ+1)
t continues through the feed-forward network as in

SMART.

At training time, we load the pretrained SMART weights
and freeze all original parameters except:

• The new projection weights {Wp,bp} for all cameras,

• The added multi-head cross-attention weights in de-
coder layer 2.

We fine-tune on 10% of the Waymo scenarios, using the
standard next-token cross-entropy loss.

5. Evaluation
The simulated agent behaviors are evaluated by a Re-

alism Meta Metric (RMM). This RMM is derived by ag-
gregating several component metrics, with each component
metric quantifying realism by calculating the Negative Log
Likelihood (NLL) of observed real-world driving behav-
iors given the distribution induced by the simulation model.
These NLL-based component metrics are computed over
specific measurements in three categories: kinematic, in-
terative, and map-based metrics.

5.1. Kinematic Metrics

To quantify physical realism we follow the official
Waymo Open Dataset Sim Agents evaluation protocol. At
every discrete time-step t (with fixed interval ∆t) we record
the agents’ linear speed v(t), linear acceleration a(t), angu-
lar speed ω(t), and angular acceleration α(t) and place each
scalar sequence into a fixed-width histogram:

Table 1. Kinematic Metrics and their binning.
Quantity Range Bins Weight

v [0, 25] 10 0.05
a [−12, 12] 11 0.5
ω [−0.628, 0.628] 11 0.05
α [−3.14, 3.14] 11 0.05

All timesteps are treated as i.i.d. samples. Laplace (ad-
ditive) smoothing with ε = 0.1 prevents zero-bin issues.
For each kinematic variable we compute the symmetrised
Kullback–Leibler divergence between the agent’s empiri-
cal histogram p̂ and the reference distribution p⋆ provided
by Waymo. The four divergences are then combined via
a weighted sum (weights listed above) to yield the overall
kinematic score Mkin.

5.2. Interactive Metrics

Interactive safety is captured by 1) distance-to-nearest-
object dmin = minB ̸=A∥pA(t) − pB(t)∥2, 2) time-to-
collision TTC: analytical time until Minkowski-sum overlap
assuming constant velocities; clamped at 5 s, and 3) a binary
collision flag I

(
bboxA(t) ∩ bboxB(t) ̸= ∅

)
. For the two

continuous signals we form fixed–width histograms (again
with ε = 0.1 smoothing; i.i.d. timesteps); the Bernoulli
channel is scored with binary cross-entropy. Meta-metric
weights follow the public Sim-Agents specifications:

Table 2. Interactive metrics and their binning.
Quantity Range Bins Weight

dmin [−5, 40] 10 0.10
TTC [0, 5] 10 0.10
Collision flag – Bernoulli 0.25

5.3. Map-based Metrics

Road-rule compliance is evaluated with distance-to-
road-edge dedge(t) = minq∈Pedge∥pA(t)−q∥2, a binary off-
road indicator I(pA(t) /∈ drivable), and traffic-light viola-
tion. Histogram and Bernoulli channels are handled exactly
as in Sec. 5.2; weights are set by the benchmark.

5.4. Minimum Average Displacement Error

Aside from the RMM, minADE is a tie-breaker met-
rics that measures prediction accuracy. For M agents in

Table 3. Map-based metrics and their binning.
Quantity Range Bins Weight

dedge [−20, 40] 10 0.05
Off-road flag Bernoulli – 0.25
TL violation flag Bernoulli – 0.05

group G, K multi-modal predictions (SG
i,j,t), and ground

truth (SG∗
j,t), over T timesteps:

minADE(G) =
1

M

M∑
j=1

(
min

1≤i≤K

(
1

T

T∑
t=1

∥SG
i,j,t − SG∗

j,t ∥2

))

6. Experiments
6.1. Hyperparameters

For our camera-aware SMART model, we carefully se-
lected hyperparameters to balance training efficiency and
model performance. We initialized the model with a pre-
trained SMART checkpoint and employed a finetuning
strategy with a learning rate of 5 × 10−5 and a learning
rate multiplier of 0.1 for pretrained weights to prevent catas-
trophic forgetting. The model was trained with mixed pre-
cision (16-bit) to optimize memory usage while maintain-
ing numerical stability. We used a small batch size of 4
for both training and validation to accommodate the mem-
ory overhead from camera embeddings and cross-attention
layers. The training process spanned 50 epochs with vali-
dation checks every 5 epochs, using gradient clipping at 1.0
to prevent exploding gradients. For the camera-aware com-
ponents, the given camera embedding dimension is 32 and
we strategically placed cross-attention layers at the second
decoder block to allow the model to effectively integrate
camera information while preserving the core SMART ar-
chitecture. We employed a learning rate warmup of 500
steps followed by a cosine decay schedule over 10,000 total
steps, with a minimum learning rate ratio of 0.1.

Table 4. Preliminary comparison of simulation methods on the Sim-Agents. Higher is better for RMM and its sub-scores (↑), lower is
better for minADE (↓). ∆(%) is relative to SMART.
Method RMM ↑ ∆RMM (%) Kinematic ↑ ∆Kin (%) Interactive ↑ ∆Int (%) Map ↑ ∆Map (%) minADE ↓ ∆minADE (%)

Camera SMART (ours) 0.7769 +1.57% 0.4799 −1.30% 0.8237 +2.46% 0.8862 +1.39% 2.2600 +64.78%
SMART [10] 0.7649 — 0.4862 — 0.8039 — 0.8741 — 1.3716 —
Linear extrapolation 0.3985 −47.90% 0.2253 −53.66% 0.4327 −46.18% 0.3848 −55.99% 7.5148 +447.81%

6.2. Results

Although we pretrained the full SMART-7M model on
100% of the scenario data, the camera embeddings is large
(around 2.5 TB), so we only finetuned the cross attention
model on 10% of the data and tested it on 10% of the data.
Table 4 shows the performance of our model against the
baseline models.

6.3. Quantitative Analysis

Our camera-aware SMART variant improves the Real-
ism Meta-Metric (RMM) to 0.7769, a 1.6% improvement
over the original SMART baseline (Table 4). This lift aligns
with the Sim-Agents rubric, which weights interactive and
map-based metrics more than pure kinematics (refer to ta-
bles 1 2 3) The interactive and map sub-scores increase by
+2.46% and +1.39%, respectively, supporting the hypoth-
esis that camera texture helps the agent anticipate merges,
yields, and lane adherence.

The slight drop in the kinematic NLL (−1.3% relative)
could be due to image-induced over-responsive braking.
Adding a physics-guided residual head is therefore a
promising next step.

Accuracy vs. diversity. minADE deteriorates from
1.37 → 2.26 . Because minADE rewards the single best
hypothesis among K=32 samples, any sampler that widens
mode coverage will see this metric rise—a trade-off noted
in the official challenge write-up [9].

Position in the SoTA landscape. Table 5 contrasts our
system with recent publications:

Table 5. Comparison with recent Sim-Agents models.

Method RMM ↑ minADE ↓

CAT-K [11] 0.7846 1.3065
Camera SMART (ours) 0.7769 2.26
SMART [10] 0.7649 1.3716

Despite being fine-tuned on only 10% of the data and re-
taining the compact 7 M-parameter SMART backbone, our
model achieves comparable performance with state-of-the-
art, while outperforming our baseline model SMART on the
RMM metrics. CAT-K employs additional finetuning based
on distance from the ground truth, but camera embeddings
provide addition context. So we expect adding camera em-

beddings to CAT-K would boost its performance too. The
result underscores the leverage gained from visual context
even with limited finetuning.

6.4. Qualitative Analysis

We visualize two representative scenarios for compar-
ison. In the visualizations for the SMART and Camera
SMART models, the ground truth trajectories are translu-
cently overlayed.

In Scenario 02 (Figure 3), which appears to be an inter-
section on a major street, there are two notable interactions:

Top-right pair of cars: In the ground truth, the right-
most vehicle pulls off the road next to another car that is
already parked off-road—perhaps indicating an emergency-
light situation or an inspection. Our model rollout repli-
cates this behavior correctly. In contrast, the baseline model
stops the leftmost car directly behind its neighbor, resulting
in a slight overlap and collision. We hypothesize that our
camera-aware agent uses visual cues—such as the curb’s
geometry or flashing lights—to recognize that it should pull
over, rather than stopping immediately behind. This extra
context helps it execute the off-road maneuver more pre-
cisely.

Tailgating behavior in the top lane: The ground truth
shows one car closely following another (tailgating). In
our rollout, the following car actually collides with the lead
vehicle, and the baseline behaves similarly, although less
pronounced. This collision highlights a shortcoming in our
kinematic modeling, causing it to fail to brake in time dur-
ing this edge-case scenario.

In Scenario 04 (Figure 4), set in a residential parking
area, the ground truth shows a car veering slightly off the
road before correcting and exiting to the right. Our rollout
successfully reproduces this subtle off-road deviation and
return. The baseline, however, veers significantly farther off
the road and fails to drive back onto the lane. This behavior
explains our model’s higher map-based score: by leveraging
visual context, the camera-aware agent “sees” the drivable
boundaries and corrects itself, whereas the baseline lacks
sufficient information to stay on-road.

7. Conclusion
We presented a camera-aware extension to SMART, a

scalable multi-agent traffic simulator built on next-token
prediction. By fusing compact visual embeddings from

Figure 3. Visualization of sample rollouts of Scenario 02 across methods. GT is the ground truth. Each timestamp is evenly spaced.

Figure 4. Visualization of sample rollouts of Scenario 04 across methods. GT is the ground truth. Each timestamp is evenly spaced.

Waymo’s multi-camera system into the SMART decoder
via cross-attention, our model improves realism metrics by
up to 2.5% in key subcategories like interaction and map
compliance. These gains suggest that even lightweight vi-
sual context—when properly integrated—can bridge crit-
ical gaps in modeling nuanced driving behaviors such as
emergency pull-overs, curb alignments, and off-road recov-
ery.

Our method achieves these improvements while fine-
tuning only a small portion of the parameters and using just
10% of the training data. This demonstrates that vision-

equipped simulation can scale efficiently and complements
structure-aware baselines without needing wholesale re-
training. Although minADE rises due to broader mode cov-
erage, this is an expected trade-off when sampling more di-
verse futures in a multimodal setting.

Moving forward, our results indicate promising avenues
such as applying vision-informed attention to CAT-K, in-
corporating LiDAR as additional modalities, and develop-
ing strategies to balance diversity and precision in trajec-
tory sampling. Overall, our approach brings simulation one
step closer to real-world fidelity—an essential milestone for

safely deploying autonomous systems at scale.

Contributions
Ryan Rong conceived the project idea and led the devel-

opment of the overall research framework. He set up the
codebase for the data pipeline, managed model training, de-
signed the model architecture, produced figures, wrote the
methods and results sections and edited the report.

Jerry Gu conducted a comprehensive literature review to
support the theoretical framework of the project. He con-
tributed to setting up the baseline models and also assisted
in refining and documenting the experimental process.

Yina Jian summarized the formulas, frameworks, and
context of state-of-the-art methods in automatic driving, an-
alyzed existing methods, delved deeply into the details of
the data used in the project, guided the theoretical part of
the multi-agent driving problem, and wrote the introduction
and dataset section of the report.

References
[1] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan,

P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell,
S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter,
C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,
J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei. Language models are few-shot learners.
CoRR, abs/2005.14165, 2020. 1

[2] P. Esser, R. Rombach, and B. Ommer. Taming transform-
ers for high-resolution image synthesis. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 12873–12883, 2021. 2

[3] M. Janner, Q. Li, and S. Levine. Offline reinforcement learn-
ing as one big sequence modeling problem. In Advances in
Neural Information Processing Systems, volume 34, pages
1273–1286, 2021. 2

[4] Y. Lu, J. Fu, G. Tucker, X. Pan, E. Bronstein, R. Roelofs,
B. Sapp, B. White, A. Faust, S. Whiteson, D. Anguelov, and
S. Levine. Imitation is not enough: Robustifying imitation
with reinforcement learning for challenging driving scenar-
ios, 2023. 1

[5] N. Mu, J. Ji, Z. Yang, N. Harada, H. Tang, K. Chen, and
Y. Zhou. MOST: Multi-Modality Scene Tokenization for
Motion Prediction. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 14988–14999, 2024. 1, 2

[6] M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec,
V. Khalidov, P. Bojanowski, et al. Dinov2: Learning ro-
bust visual features without supervision. arXiv preprint
arXiv:2304.07193, 2023. 2

[7] J. Philion, X. B. Peng, and S. Fidler. Trajeglish: Traf-
fic modeling as next-token prediction. arXiv preprint
arXiv:2312.04535, 2023. 2

[8] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh,
S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark,

G. Krueger, and I. Sutskever. Learning transferable visual
models from natural language supervision. In Proc. Int.
Conf. Mach. Learn. (ICML), pages 8748–8763. PmLR, 2021.
2

[9] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Pat-
naik, P. Tsui, J. Guo, Y. Zhou, Y. Chai, B. Caine, V. Vasude-
van, W. Han, J. Ngiam, H. Zhao, A. Timofeev, S. Ettinger,
M. Krivokon, A. Gao, A. Joshi, Y. Zhang, J. Shlens, Z. Chen,
and D. Anguelov. Scalability in perception for autonomous
driving: Waymo open dataset. CoRR, abs/1912.04838, 2019.
6

[10] W. Wu, X. Feng, Z. Gao, and Y. Kan. Smart: Scalable
multi-agent real-time motion generation via next-token pre-
diction. In Advances in Neural Information Processing Sys-
tems (NeurIPS), volume 37, pages 114048–114071, 2024. 1,
2, 3, 6

[11] Z. Zhang, P. Karkus, M. Igl, W. Ding, Y. Chen, B. Ivanovic,
and M. Pavone. Closed-loop supervised fine-tuning of to-
kenized traffic models. arXiv preprint arXiv:2412.05334,
2024. 1, 2, 6

[12] J. Zhao, J. Zhuang, Q. Zhou, T. Ban, Z. Xu, H. Zhou,
J. Wang, G. Wang, Z. Li, and B. Li. Kigras: Kinematic-
driven generative model for realistic agent simulation, 2024.
2

